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Chapter 1

Geometry of Exponential Family

1 Introduction

Information geometry emerged from the geometric study of a statistical
model of probability distributions. The information geometric tools are
widely applied to various fields such as statistics, information theory, stochas-
tic processes, neural networks, statistical physics, neuroscience etc. The im-
portance of the differential geometric approach to the field of statistics was
first noticed by C R Rao. On a statistical model of probability distributions
he introduced a Riemannian metric defined by the Fisher information known
as the Fisher information metric.

Another milestone in this area is the work of Amari. He introduced the α -
geometric structures on a statistical manifold consisting of Fisher Information
metric and the ±α - connections. Harsha and Moosath introduced more
generalized geometric structures called the (F,G) geometry on a statistical
manifold which is a generalization of α− geometry. There are many attempts
to understand the geometry of the statistical manifold and also to develop a
differential geometric framework for the estimation theory.

In this chapter we will be mainly looking at the geometry of exponential
family. An exponential family is an important statistical model which is at-
tracted by many of the researchers from Physics, Mathematics and Statistics.
The Exponential family contains as special cases most of the standard dis-
crete and continuous distributions that we use for practical modelling, such
as the normal, Poisson, Binomial, exponential, Gamma, multivariate nor-
mal, etc. Distributions in the Exponential family have been used in classical
statistics for decades. We discuss the dually flat structure of the finite di-
mensional exponential family with respect to the ±1− connections defined by
Amari. Then the q− exponential family relevant in the q - entropy maximum
problem and its q−structure which is dually flat are considered. Finally a
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glimpse of a more generalized notion of the exponential family the deformed
exponential family and its dually flat structures are given.

2 Differential Geometry

Definition 1 An n− dimensional topological manifold M is a second
countable, Hausdorff topological space which is locally Euclidean. That is ,
every point p ∈ M , there exist an open set U ⊂ M and a homeomorphism
φ : U −→ U ′, where U ′ is an open subset of Rn. (U, φ) is called a co-ordinate
chart on M around p and φ is written as φ = (xi); i = 1, ..., n.

If we have two charts (U,ϕ) and (V, ψ) on M such that U ∩ V 6= ∅, the
composite map ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→ ψ(U ∩ V ) is called the transition
map. The two charts (U,ϕ) and (V, ψ) are said to be smoothly compatible
if either U ∩ V = ∅ or the transition map ψ ◦ ϕ−1 is a diffeomorphism.

An atlas A for M is the collection of charts whose domain cover M
and A is said to be a smooth atlas if any two charts in A are smoothly
compatible with each other. A is a maximal atlas if any chart that is
smoothly compatible with every other charts in A is already in A. A smooth
structure on any topological manifold is a maximal smooth atlas on M . A
smooth manifold is a pair (M,A) where M is a topological manifold and
A is a smooth structure on M .

Definition 2 Let M be a smooth manifold. A function f : M −→ R is
said to be a smooth map if f ◦ϕ−1 is smooth for some smooth chart (U,ϕ)
around each point. The set of all smooth functions from M to R is denoted
by C∞(M).

Example 1 1. The Euclidean space Rn is a smooth n-dimensional man-
ifold. A = (Rn, IdRn) is a smooth atlas on Rn.

2. Consider the unit circle S1 = {(x, y) / x2 + y2 = 1}
Let U+

i = {(x1, x2) ∈ S1 / xi > 0} and U−i = {(x1, x2) ∈ S1 / xi < 0}
for i = 1, 2.
Define

φ+
1 : (−1, 1) −→ U+

1 ; φ+
1 (x) = (x,

√
1− x2)

φ2+ : (−1, 1) −→ U+
2 ; φ+

2 (x) = (x,−
√

1− x2)

φ−1 : (−1, 1) −→ U−1 ; φ−1 (x) = (
√

1− x2, x)

φ−2 : (−1, 1) −→ U−2 ; φ−2 (x) = (−
√

1− x2, x)

A = {(U±i , φ±), i = 1, 2} is a smooth atlas on S1. Hence S1 is a
1-dimensional smooth manifold.
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Definition 3 A linear map X : C∞(M) −→ R is called a derivation at p
if it satisfies the following

X(fg) = f(p)Xg + g(p)Xf (1)

for all f, g ∈ C∞(M).

Let M be a smooth manifold and let p ∈ M . The tangent space to M at
p, denoted by TpM is defined as the set of all derivations of C∞(M) at p.
Let (U, φ = (xi)) be a smooth chart on M around p. Then TpM is a vector
space of dimension n which is spanned by { ∂

∂xi
|p; i = 1, ..., n}. Each element

in TpM is called a tangent vector at p. Let T ∗pM denote the dual space
of TpM , i.e the set of all linear maps from TpM to R. T ∗pM is also an n-
dimensional vector space which is spanned by {dxi|p; i = 1, ..., n}. ElementS
of T ∗pM is called cotangent vectors at p.

A tangent bundle TM on M is the disjoint union of tangent spaces at all
points of M .

TM =
⋃
p∈M

TpM (2)

A cotangent bundle T ∗M on M is the disjoint union of cotangent spaces
at all points of M

T ∗M =
⋃
p∈M

T ∗pM (3)

A vector field X on a smooth manifold M is a map X : M −→ TM , which
associates to each point p ∈M a tangent vector Xp ∈ TpM .
A co-vector field or a 1-form Y on a smooth manifold M is a map Y :
M −→ T ∗M , which associates to each point p ∈ M a cotangent vector
Yp ∈ T ∗pM .

Definition 4 Let M be an n−dimensional smooth manifold. A Rieman-
nian metric g =<,> on M is a smooth symmetric 2-tensor field which is
positive definite at each point. For every p ∈M , gp =<,>p : TpM×TpM −→
R satisfies the following conditions:

1. < aX+bY, Z >p= a < X, Y >p +b < Y, Z >p ∀X, Y, Z ∈ TpM, ∀a, b ∈
R

2. < X, Y >p=< Y,X >p ∀X, Y ∈ TpM

3. If X 6= 0 then, < X,X >p > 0

A Riemannian manifold is a manifold equipped with a Riemannian metric.
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Definition 5 Let M be an n-dimensional smooth manifold. Let Γ(TM) de-
note the set of all smooth vector fields on M . A linear or an Affine con-
nection on M is defined as a map ∇ : Γ(TM)× Γ(TM) −→ Γ(TM) which
satisfies the following:

1. ∇X(Y + Z) = ∇XY +∇XZ

2. ∇(X+Y )Z = ∇XZ +∇YZ

3. ∇X(fY ) = f∇XY + (XfY

4. ∇fXY = f∇XY

for all f ∈ C∞(M) and X, Y, Z ∈ Γ(TM).

Let (U, φ = (ξi)) be a smooth chart in M . Then { ∂
∂ξi
, i = 1, .., n} are the

coordinate vector fields. For the convenience, we denote ∂
∂ξi

by ∂i. The affine

connection ∇ can be determined by n3 functions Γkij given by

∇∂i∂j = Γkij∂k

where Γkij are called the Christoffel symbols of the affine connection ∇
with respect to the coordinates (ξi); i = 1, .., n.
If ∇ is an affine connection on a Riemannian manifold M with a Riemannian
metric g =<,>, then we have

< ∇∂i∂j, ∂m >= Γkij < ∂k, ∂m >= Γkijgkm (4)

where gkm =< ∂k, ∂m >.
It is often convenient to express the Christoffel symbols of the affine connec-
tion ∇ by

Γijm = Γkijgkm =< ∇∂i∂j, ∂m > (5)

The n3 functions Γijm are called the components of the affine connection
with respect to co-ordinate (ξi).

Definition 6 Let M be Riemannian manifold with a Riemannian metric g.
A connection ∇ is said to be metric preserving or metric if it satisfies
the following,

d(g(X, Y )) = g(∇X, Y ) + g(X,∇Y ) (6)

Definition 7 Let M be a Riemannian manifold with a Riemannian metric
g. The two affine connections, ∇ and ∇∗ on the tangent bundle are said to
be dual connections if

d(g(X, Y )) = g(∇X, Y ) + g(X,∇∗Y ) (7)

holds for any two vector fields X, Y on M .
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Let Γijk = < ∇∂i∂j, ∂k >, Γ∗ijk = < ∇∗∂i∂j, ∂k > be the components of the
dual affine connections. Then we have the following relation

∂igjk = Γijk + Γ∗ikj (8)

This shows that every affine connection has a unique dual determined by

Γ∗ikj = ∂igjk − Γijk (9)

If ∇ is metric, then it is self dual.

Definition 8 A connection is said to be torsion free, if the torsion tensor

T (X, Y ) = ∇XY −∇YX − [X, Y ] = 0 (10)

On a Riemannian manifold, there exist a unique metric preserving, torsion
free connection which is called the Levi-Civita connection.

3 Family of Measures as Affine Spaces

Let (X ,B) be a measurable space, where X is a non-empty set and B is the σ
field of subsets of X . Then the family of measures on (X ,B) under suitable
regularity conditions can be made into an affine space. It can be seen that
the set of probability distributions on (X ,B) is a subset of this affine space
and a finite dimensional statistical model or a parametrized model can be
thought of as a finite-dimensional submanifold of this affine space.

Definition 9 Let V be an n-dimensional real vector space and Ξ be a non-
empty set together with a translation map + : V × Ξ −→ Ξ, (v, p) 7−→ v + p
which satisfies

1. ∀ v, w ∈ V, ∀ p ∈ Ξ, v + (w + p) = (v + w) + p

2. For any two points p, q ∈ Ξ, ∃ a unique vector v ∈ V such that
q = p+ v

Then Ξ is said to an n-dimensional affine space over the vector space
V . An affine space can be thought of as a set which becomes a vector space
by selecting a point to be the origin.

A characteristic of an affine space is the presence of special co-ordinate sys-
tems called affine co-ordinate system. Let O be a chosen origin for Ξ and let
us choose {v1, .., vn} as an ordered basis for the vector space of translation
V of Ξ. Then for any v ∈ V ,
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v = θ1(v)v1 + θ2(v)v2 + ...+ θn(v)vn

where θi, i = 1, .., n are linear functionals on V . Let φ : Ξ −→ V be the
bijection from Ξ to V determined by the choice of origin O. That is, for any
p ∈ Ξ,

φ(p) = v, where p = O + v for v ∈ V .

Hence we can regard θi, i = 1, .., n as functions on Ξ by composing with φ.

θi ◦ φ : Ξ −→ R
θi ◦ φ(p) = θi(v)

We denote θi ◦φ by θi itself. Any collection of functions defined on Ξ by such
a process is called an affine co-ordinate system. {O; v1, .., vn} is called an
affine frame of Ξ with the origin O and {θi; i = 1, ..., n} is called the affine
co-ordinate system on Ξ with respect to the affine frame.

If θ and ϕ are any two affine co-ordinate systems on Ξ with respect to
affine frames {p; v1, .., vn} and {q;w1, .., wn} respectively. Then there exists
a non-singular matrix X i

j and a vector u = [u1, ..., un] both depending on θ
and ϕ with

θi(p) =
∑n

i=1 X
i
jϕ

j(p) + ui

The origin q of the ϕ system can be written as q = p+u1v1 + ......+unvn for
ui ∈ R; i = 1, ..., n. In fact u = [u1, ..., un] is the θ-coordinates for the origin
of the ϕ system. And X i

j is the matrix given by

[X i
j] = [ [w1]θ, ...., [wn]θ ]

where [wi]θ is the column vector whose elements are the coefficient of wi with
respect to the basis {v1, ...., vn}. That is, X i

j is the change of basis matrix
from the basis {v1, ...., vn} to {w1, ...., wn} and clearly it is non-singular. We
say that two co-ordinates θ and ϕ related in this way are affinely related. And
conversely, if we have a set Ξ and a collection of co-ordinates on Ξ where any
two are affinely related, then Ξ is an affine space.

If V is infinite dimensional, then Ξ is an infinite dimensional affine space.
In that case, we do not have a co-ordinate expression as in the finite dimen-
sional case.

Example 2 1. Any vector space is an affine space over itself. Translation
map is just the addition operation of the vector space.

2. Let Ξ = (0,∞), V = R. For x ∈ Ξ, v ∈ R, define

x+ v = exp(v)x (11)
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3.1 Affine structure of the family of measures

We consider the family A of non-negative, σ−finite measures on (X ,B).
Define an equivalence relation ∼ on A by two measures in A are equivalent
if they are absolutely continuous with respect to each other. That is two
measures are equivalent if they have the same sets of measure zero. Let M
denote one of the equivalence classes ofA. SoM is the set of all non-negative,
σ−finite measures on Ω which are absolutely continuous with respect to each
other.
Let RX be the set of all measurable functions defined on (X ,B). Clearly
RX is a vector space under the addition and scalar multiplication operations
defined by

(f + g)(A) = f(A) + g(A) (12)

(cf)(A) = cf(A) ∀ f, g ∈ RX , A ∈ B, c ∈ R (13)

Note that in general, RX is an infinite dimensional vector space. Let us
assume that for every ν ∈ M and f ∈ RX , efν is a σ−finite measure. Then
M can be made into an affine space over the vector space RX under the
translation operation defined by

ν + f = efν ∀ f ∈ RX , ν ∈M (14)

1. It is easy to see that for any µ ∈ M and f ∈ RX , ν = efµ is a non-
negative, σ−finite measure on (X ,B). In fact ν(A) =

∫
A

efdµ, A ∈ B,

defined in this way has the property that ν(E) = 0 whenever µ(E) = 0
for E ∈ B and hence ν � µ and efµ ∈M.

2. For any two measures ν, µ ∈M, ∃ a unique function f = dν
dµ
∈ RX (In

fact f is the Radon-Nikodym derivative ) which translates µ to ν. We
often call ef as the density function with respect to the measure µ.

3. ∀ f, g ∈ RX , ∀µ ∈ M (µ + f) + g = efµ + g = egefµ = ef+gµ =
µ+ (f + g)
(Note that the same symbol + is used for vector space addition opera-
tion and affine space translation operation.)

Hence M is an affine space over the vector space RX . So by choosing an
origin µ, M can be identified with the vector space RX . It is equivalent to
saying that any measure inM can be expressed as densities with respect to
the chosen origin.

Definition 10 Let the map ` :M−→ RX be given by
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`(ν) = `(pµ) = log p

for any ν ∈ M In fact p = ef for f ∈ RX . Hence `(ν) = log p = log ef =
f ∈ RΩ is well defined.

Let P be the space of all probability measures in M. Notice that proba-
bility measures cannot form an affine subspace of M. Because multiplying
them by functions ef will almost certainly destroy the property that their
total mass is one or even total mass is finite. Rather than regarding them
as points in M, probability measures can also be regarded as non-negative
finite measures up to scale because we can always divide a non-negative finite
measure by its total mass to get a probability measure.

Define an equivalence relation ∼′ on M by two measures are equivalent
if they are multiples of each other. In fact rescaling is one of the translation
operations namely translation by a constant c (that is multiplication by ec).
Let M′ denote the set of measures in M identified up to scale. That is M′

is the set of all equivalence class of the equivalence relation ∼′ defined above.
We can easily see that M′ is also an affine space whose space of translation
vectors are measurable functions identified up to addition of a constant. Let
R1 be the vector space spanned by constant random variable 1. The space of
measurable functions in RX identified up to addition of a constant is therefore
RX/R1.

RX/R1 = {[f ] = f +R.1 /f ∈ RX} = {f + c /; c ∈ R , f ∈ RX} (15)

RX/R1 is the quotient space under the addition and scalar multiplication
operations defined by

(f +R1) + (g +R1) = (f + g) +R1 (16)

c(f +R1) = cf +R1 (17)

Then M′ is an affine space over the vector space RX/R1 and translation
operation is defined as [ν] + [f ] = [efν] where [ν] = {ecν/c ∈ R}
The set of probability measures P is a subset of this affine space namely the
set corresponding to finite measures up to scale.

4 Statistical Manifold

We have seen that measures can be expressed as densities with respect to
some base measure. In most of the practical applications, the base measure
will be Lebesgue measure on Rn. Here we consider the sample space X ⊆
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Rn. Any probability measure on X ⊆ Rn can be represented in terms of
density function with respect to Lebesgue measure. We represent probability
distributions on a set X using the density functions as

1. If X is a discrete set (finite or countably infinite cardinality), then by
probability distribution on X we mean that a function p : X −→ R
which satisfies

p(x) ≥ 0 (∀ x ∈ X ) and
∑
x∈X

p(x) = 1 (18)

2. If X = Rn, then by probability distribution on X we mean function
p : X −→ R which satisfies

p(x) ≥ 0 (∀ x ∈ X ) and

∫
X

p(x)dx = 1 (19)

(Note that if n ≥ 2, then
∫

denotes a multiple integral)

Definition 11 Consider a family S of probability distributions on X . Sup-
pose each element of S can be parametrized using n real-valued variables
(θ1, ..., θn) so that

S = {pθ = p(x; θ) / θ = (θ1, ..., θn) ∈ E} (20)

where E is a subset of Rn and the mapping θ 7→ pθ is injective. We call such
family S an n-dimensional statistical model or a parametric model or
simply a model on θ. We often write as S = {pθ}

Let us now state several regularity conditions regarding the statistical model
S = {pθ} which are required for our geometric theory.

Regularity conditions

1. We assume that E is an open subset of Rn and for each x ∈ X , the
function θ 7→ p(x; θ) is of class c∞

2. Let `(x; θ) = log p(x; θ). For every fixed θ, n functions in x, {∂i`(x; θ); i =
1, ..., n} are linearly independent.

3. The order of integration and differentiation may be freely rearranged.

4. The moments of ∂i`(x; θ) exists upto necessary orders.
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5. For a probability distribution p on Ω, let the support of p be defined
as, supp(p) := {x | p(x) > 0}. The case when supp(pθ) varies with θ
poses rather significant difficulties for analysis. Hence we assume that
supp(pθ) is constant with respect to θ. Then we can redefine X to be
supp(pθ). This is equivalent to assuming that p(x; θ) > 0 holds for all
θ ∈ E and all x ∈ X . This means that the model S is a subset of

P(X ) := {p : X −→ R | p(x) > 0 (∀ x ∈ X );

∫
X

p(x)dx = 1} (21)

Definition 12 For a model S = {pθ / ξ ∈ E}, the mapping ϕ : S −→ Rn

defined by ϕ(pθ) = θ allows us to consider ϕ = (θi) as a coordinate system for
S. Suppose we have a c∞ diffeomorphism ψ : E −→ ψ(E), where ψ(E) is an
open subset of Rn. Then if we use ρ = ψ(θ) instead of ξ as our parameter,
we obtain S = {pψ−1(ρ) | ρ ∈ ψ(E)}. This expresses the same family of
probability distributions S = {pξ}. If we consider parametrizations which are
c∞ diffeomorphic to each other to be equivalent, then we may consider S as
a c∞ differentiable manifold and we call it as a statistical manifold.

Example 3 (Normal Distribution)
X = R, n = 2, θ = (µ, σ), E = {(µ, σ) / −∞ < µ <∞, 0 < σ <∞}

N(µ, σ) = {p(x; θ) =
1√
2πσ

exp{−(x− µ)2

2σ2
} (22)

This is a 2-dimensional manifold which can be identified with the upper half
plane.

5 The Exponential Family

The Exponential family is a practically convenient and widely used unified
family of distributions on finite dimensional Euclidean spaces parametrized
by a finite dimensional parameter vector. It contains as special cases most
of the standard discrete and continuous distributions that we use for practi-
cal modelling, such as the normal, Poisson, Binomial, exponential, Gamma,
multivariate normal, etc.

Definition 13 The standard form of a n-dimensional exponential family of
distributions S = {p(x; θ) / θ ∈ E ⊆ Rn} is defined as

p(x; θ) = exp(
n∑
i=1

θixi − ψ(θ)) or log(p(x; θ)) =
n∑
i=1

θixi − ψ(θ) (23)
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where x = (x1, ..., xn) is a set of random variables, θ = (θ1, .., θn) are the
canonical parameters and ψ(θ) is determined from the normalization condi-
tion.

5.1 Geometric Structures on Statistical Manifolds

Let S = {pθ | θ ∈ E ⊆ Rn} is a statistical manifold. Let Tθ(S) be the tangent
space to S at a point pθ is given by

Tθ(S) = {αi∂i / αi ∈ R} (24)

The tangent space to a statistical manifold can be represented in a more
convenient way as follows.
For the statistical manifold S = {p(x; θ)}, define `(x; θ) = log p(x; θ) and
consider the partial derivatives ∂i`; i = 1, ...., n. By our assumption, ∂i`; i =
1, ...., n are linearly independent functions in x. We can construct the follow-
ing n-dimensional vector space spanned by n functions ∂i`; i = 1, ...., n in x
as,

T 1
θ (S) = {A(x) / A(x) = Ai∂i`} (25)

There is a natural isomorphism between these two vector spaces Tθ(S) and
T 1
θ (S) given by

∂i ∈ Tθ(S)←→ ∂i`(x; θ) ∈ T 1
θ (S) (26)

Any tangent vector A = Ai∂i ∈ Tθ(S) corresponds to a random variable
A(x) = Ai∂i`(x; θ) ∈ T 1

θ (S) having the same components Ai. Note that
Tθ(S) is the differentiation operator representation of the tangent space, while
T 1
θ (S) is the random variable representation of the same tangent space. The

space T 1
θ (S) is called the 1−representation of the tangent space.

Define expectation with respect to the distribution p(x; θ) as

Eθ(f) =

∫
f(x)p(x; θ)dx (27)

Note that Eθ[∂i`x;θ] = 0 since p(x; θ) satisfies∫
p(x; ξ)dx = 1 (28)

Hence for any random variable A(x) ∈ T 1
θ (S), we have Eθ[A(x)] = 0.

This expectation induces an inner product on S in a natural way. Let A and
B be two tangent vectors in Tθ(S) and A(x) and B(x) be the 1− represen-
tations of A and B. Then their inner product can be defined as
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< A,B >θ = Eθ[A(x)B(x)]

Especially the inner product of the basis vectors ∂i and ∂j is

gij(θ) = < ∂i, ∂j >θ = Eθ[∂i`(x; θ)∂j`(x; θ)] (29)

= −E[∂i∂j`(x; θ)] (30)

=

∫
∂i`(x; θ)∂j`(x; θ)p(x; θ)dx (31)

It is clear that the matrix G(θ) = (gij(θ)) is symmetric (i.e gij = gji). For
any n-dimensional vector c = [c1, ..., cn]t

ctG(θ)c =

∫
{

n∑
i=1

ci∂i`(x; θ)}2p(x; θ)dx > 0 (32)

Since {∂1`(x; θ), ..., ∂n`(x; θ)} are linearly independent, G is positive definite.
Hence g =<,> defined in (31) is a Riemannian metric on the statistical
manifold S, called the Fisher information metric.

Example 4 Normal distribution
For the normal family

S = N(µ, σ) = {p(x; θ) =
1√
2πσ

exp{−(x− µ)2

2σ2
}} (33)

with parameters θ = (µ, σ), the log-likelihood function is given by

`(x, θ) = − (x−µ)2

2σ2 − log
√

2πσ

The tangent space T 1
θ S is spanned by ∂1 = ∂

∂µ
and ∂2 = ∂

∂σ

∂1 = (x−µ)
σ2 , ∂2 = − (x−µ)2

σ3 − 1
σ

Then the Fisher information matrix G(θ) = (gij) is given by 1

σ2
0

0
2

σ2


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Definition 14 Let S = {p(x; θ) / θ ∈ E} be an n-dimensional statistical
manifold with the Fisher metric g. We can define n3 functions Γijk by

Γ1
ijk = Eθ[(∂i∂j`(x; θ))(∂k`(x; θ))] (34)

Γ1
ijk uniquely determine an affine connection ∇ on the statistical manifold S

by
Γ1
ijk =< ∇1

∂i
∂j, ∂k > (35)

∇1 is called 1−connection or the exponential connection.

Previously, `(x; θ) the logarithm of the density function p(x; θ) in a statistical
model S = {p(x; θ)} to define the fundamental geometric structures. Amari
defined one parameter family of functions called the α - embedding indexed
by α ∈ R.

Definition 15 α−representation
Let L(α)(p) be a one parameter family of functions defined by

L(α)(p) =

{
2

1−αp
1−α
2 α 6= 1

log p α = 1
(36)

and we call
`(α)(x; θ) = L(α)(p(x; θ)) (37)

the α−representation of the density function p(x; θ).

The 1−representation `1(x; θ) is the log-likelihood function `(x; θ) and the
(−1)−representation `−1(x; θ) is the density function p(x; θ) itself.

Let Tαθ (S) be the vector space spanned by n linearly independent functions
∂i`α(x; θ) in x, i = 1, ..., n.

Tαθ (S) = {A(x) / A(x) = Ai∂i`α(x; θ)} (38)

There is a natural isomorphism between these two vector spaces Tθ(S) and
Tαθ (S) given by

∂i ∈ Tθ(S)←→ ∂i`α(x; θ) ∈ Tαθ (S) (39)

The vector space Tαθ (S) is called the α−representation of the tangent
space Tθ(S). The α−representation of a vector A = Ai∂i` ∈ Tθ(S) is the
random variable

Aα(x) = Ai∂i`α(x; θ) (40)
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Let us define the α−expectation of a random variable f with respect to the
density p(x; θ) as

Eα
θ (f) =

∫
f(x)p(x; θ)αdx. (41)

Let A and B be two tangent vectors in Tθ(S) and Aα(x) and Bα(x) be the α−
representations of A and B. Then an inner product can be defined naturally
as

< A,B >α
θ = Eα

θ [Aα(x)Bα(x)] (42)

We have the relation

∂i`α(x; θ) = p
(1−α)

2 ∂i`(x; θ) (43)

Thus we have

< ∂i, ∂j >
α
θ =

∫
∂i`α(x; θ)∂j`α(x; θ)p(x; θ)αdx (44)

=

∫
∂i` ∂j` p(x; θ) dx (45)

= gij(θ) (46)

(∂i`α)(∂j`−α) = p(x; θ) ∂i` ∂j` (47)

The inner product has the following dualistic expression for any α,

< A,B >θ =

∫
Aα(x, θ)B−α(x; θ)dx (48)

Then we say that the two vector spaces Tαθ (S) and T−αθ (S) are dually cou-
pled. That is the inner product of two vectors A and B is given by the
integration of the product of their α− and (−α)−representations.
We have,

∂i∂j`α = p
(1−α)

2 (∂i∂j`+
1− α

2
∂i`∂j`) (49)

Hence we can define n3 functions Γαijk by

Γαijk =

∫
∂i∂j`α(x; θ)∂k`−α(x; θ)dx (50)

These Γαijk uniquely determine connections ∇α on the statistical manifold S
by

Γαijk = < ∇α
∂i
∂j, ∂k > (51)

which is called α-connection.
Thus the one parameter family of functions Lα(p) defines a family of connec-
tions ∇α, α ∈ R on the statistical manifold S.
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Lemma 5.1 The α−connection ∇α and the −(α)−connection ∇−α are dual
with respect to the Fisher information metric. In particular, the 0− connec-
tion is the Levi-Civita connection or the metric connection.

Proof By the use of α−representation, we have

A < B,C > = A

∫
Bα(x, θ)C−α(x; θ)dx (52)

=

∫
(ABα(x, θ))C−α(x; θ)dx+

∫
Bα(x, θ)(AC−α(x; θ))dx

= < ∇α
AB,C > + < B,∇−αA C > (53)

Now consider the exponential family S = {p(x; θ) / θ ∈ E ⊆ Rn} where
p(x, θ) = exp[

∑n
i=1 θ

ixi − ψ(θ)].
Now ∂il(x; θ) = xi − ∂iψ(θ), ∂i∂jl(x; θ) = −∂i∂jψ(θ)
Then Γ1

ijk = ∂i∂jψ(θ)Eθ(∂klθ) = 0
Thus we have ∇1

∂i
∂j = 0. Then we say that the exponential family is 1 - flat.

By duality we get it is −1 - flat also. Thus the exponential family is a dully
flat space with respect to the ±1 connections defined by Amari. Thus we
have the

Theorem 5.2 The exponential family is a dually flat space with respect to
the ±1 connections defined by Amari.

A dually flat space is an important tool in the geometric study of statisti-
cal estimation. Now we have seen that the important statistical model the
exponential family has a dually flat structure with respect to the α = ±1−
connections.

6 Deformed Exponential Family

For any α ∈ R, Amari defined an α−family of probability density functions
S = {p(x; θ) / θ ∈ E ⊆ Rn} as

Lα(p(x; θ)) =
n∑
i=1

θixi − ψ(θ) (54)

where Lα(p) is the α−embedding.
When α = 1, the α−family is the exponential family. The exponential
family is 1−flat. But for α 6= 1, α−family is not flat with respect to the
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α−connection. So how to get dually flat connections on a α−family? q-
exponential family originated from statistical physics gave an answer to this.
It is shown that a q−exponential family, which is an α−family with α =
1−2q, has a dually flat structure called q-structure. Moreover the q-geometry
is the conformal flattening of α−geometry.

Definition 16 Two statistical manifolds (M,∇, h) and (M, ∇̃, h̃) are said
to be β-conformally equivalent if there exist a positive function φ on M such
that

h̃(X, Y ) = φ h(X, Y ) (55)

h̃(∇̃XY, Z) = φ h(∇XY, Z) +
1− β

2
{h(Y, Z)dφ(X) + h(X,Z)dφ(Y )}

−1 + β

2
h(X, Y )dφ(Z) (56)

In terms of the basis vectors, we can rewrite the above expression as

h̃(∂i, ∂j) = h̃ij = φ h(∂i, ∂j) = φ hij (57)

Γ̃βijk = φ Γijk +
1− β

2
{hjk∂iφ+ hik∂jφ} −

1 + β

2
hij∂kφ (58)

Now let us describe the geometry of a q−exponential family.
q−logarithm is defined by

logq(u) =
1

1− q
(u1−q − 1); q > 0 (59)

and its inverse function q-exponential by

expq(u) = {1 + (1− q)u}
1

1−q ; u >
−1

1− q
(60)

in the limiting case q −→ 1, we get

logq(u) = log u (61)

expq(u) = expu (62)

Definition 17 A statistical manifold S = {p(x; θ) / θ ∈ E ⊆ Rn} is said to
be a q-exponential family if

logq p(x; θ) =
n∑
i=1

θixi − ψq(θ) (63)

where ψq(θ) is obtained from the normalization
∫
p(x; θ)dx = 1.
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Define a functional

hq(θ) =

∫
p(x; θ)qdx (64)

and q-Riemannian metric gq by

gqij(θ) = ∂i∂jψq(θ) =
q

hq(θ)

∫
(xi−∂iψq(θ)) (xj−∂iψq(θ))p(x; θ)2q−1 dx (65)

q-Riemannian metric can be written as

gqij(θ) =
q

hq(θ)

∫
(xi − ∂iψq(θ)) (xj − ∂iψq(θ))p(x; θ)2q−1 dx (66)

=
q

hq(θ)

∫
∂ip ∂jp

1

p
dx (67)

=
q

hq(θ)
gij(θ) (68)

where g is the Fisher information metric. When q = 1, q−Riemannian metric
reduces to the Fisher information metric.
Using the convex function ψq, a divergence of Bregman type called q−divergence
is defined as

Dq[p(x; θ1) : p(x; θ2)] = ψq(θ2)− ψq(θ1)−∇ψq(θ1).(θ2 − θ1) (69)

The q−divergence can be written as

Dq[p; r] =
1

hq(θ)

∫
(logq(p)− logq(r)) p

q dx (70)

Let

D̃q[p; r] =

∫
(logq(p)− logq(r)) p

q dx (71)

Then D̃q is a constant multiple of well known α-divergence with α = 1− 2q.
Thus q-divergence takes the form

Dq[p; r] =
1

hq(θ)
D̃q[p; r] (72)

The q−divergence Dq induces an affine connection ∇Dq given by

Γ
Dq
ijk = ∂i∂j∂kψq(θ) (73)
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We have

∂i∂j∂kψq(θ) =
q

hq(θ)

(∫
∂i∂j` ∂k` p dx+ (2− q)

∫
∂i` ∂j` ∂k` p dx

)
+

q

hq(θ)

(∫
∂k∂j` ∂i` p dx+

∫
∂i∂k` ∂j` p dx

)
(74)

The dual D∗q of Dq induces

Γ
D∗
q

ijk = 0 (75)

Thus q−divergence induces a dually flat structure on S. Hence S is a dually
flat space. Note that this new structure is different from α−geometry. The
q-geometry can be obtained as a conformal transformation of α-divergence,
where α = 1− 2q by a gauge function 1

hq(θ)
.

6.1 Dually Flat Deformed Exponential Family

Naudts introduced a generalized notion of exponential family called the de-
formed exponential family. For convenience we formulate the deformed ex-
ponential family using a smooth function F : (0,∞) −→ R satisfying F ′ > 0
and F ′′ < 0.

Definition 18 F-Exponential Family
Let F : (0,∞) −→ R be any smooth increasing concave function. Let Z be
the inverse function of F . Define the standard form of an n-dimensional
F−exponential family of distributions as

p(x; θ) = Z(
n∑
i=1

θixi − ψ(θ)) or F (p(x; θ)) =
n∑
i=1

θixi − ψ(θ) (76)

where x = (x1, ..., xn) is a set of random variables, θ = (θ1, .., θn) are the
canonical parameters and ψ(θ) is determined from the normalization condi-
tion.

Remark 1 Note that when F (p) = logp the F - exponential family is the
exponential family and when F (p) = logqp it is the Q - exponential family.

The deformed exponential family is dually flat with respect to the U-
geometry defined by Naudts. Also it is dually flat with respect to the Ξ -
geometry defined by Amari. Both the dually flat structures are closely related
to the (F,G)- geometry introduced by Harsha and Moosath.

19



Chapter 2

Geometric Approach to Estimation Theory

Now we discuss the consistency and efficiency of an estimator in a sta-
tistical manifold. A standard exponential family naturally has a sufficient
statistics and also the dual co-ordinate has an efficient estimate. The prop-
erties of an estimator in a curved exponential family can be captured by
looking at the geometric properties of the associated ancillary manifold.
Consider a n-dimensional exponential family S = {p(x; θ) = exp(

∑n
i=1 θ

ixi−
ψ(θ)) / θ ∈ E ⊆ Rn}. Let M = {q(x;u) / u = (ua) ∈ Rm} be m-
dimensional curved exponential family. Then we have q(x, u) = p(x; θ(u)).
Let x1, ..., xN be N independent observations from q(x;u) ∈ M . Then the
sufficient statistic (or the observed point) x̄ = (x̄1, ..., x̄n) defines a distri-
bution in S whose η co-ordinate is given by η̂i = x̄i. An estimator ûN for
u ∈ M is a function of the observed point x̄ = η̂ and can be considered as a
mapping from S to M

ûN = ûN(x̄) = ûN(η̂) (77)

Now an ancillary manifold (estimating submanifold) AN(u) associated with
an estimator ûN is defined as the inverse image of the mapping ûN given by

AN(u) = {η = (ηi) ∈ S / ûN(η) = u} (78)

Now let
A(u) = lim

N→∞
AN(u) (79)

The consistency and efficiency of ûN in a curved exponential family M can
be given in term of A(u)

• An estimator ûN for u ∈ M is consistent if and only if every point
η(u) ∈M ⊂ S is included in the estimating submanifold A(u).

• A consistent estimator ûN for u ∈ M is first order efficient if and only
if A(u) is orthogonal to M at the intersecting point η(u) ∈M .

In the case of a curved exponential family, it is already known that the
maximum likelihood estimator is consistent and first order efficient.
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7 Estimation in a Curved Exponential Fam-

ily

Consider a n-dimensional exponential family S = {p(x; θ) / θ ∈ E ⊆ Rn}

p(x; θ) = exp(
n∑
i=1

θixi − ψ(θ)). (80)

Let x1, ..., xN be N independent observations from p(x; θ) ∈ S. Then the
joint density can be written as

p(x1, ...., xN ; θ) =
N∏
j=1

exp(
n∑
i=1

θixji − ψ(θ)) (81)

or

`(x1, ..., xN ; θ) = N

[
n∑
i=1

θix̄i − ψ(θ)

]
(82)

where x̄ = (x̄i) is the arithmetic mean given by

x̄i =
x1
i + ....+ xNi

N
; i = 1, .., n (83)

That is the joint density p(x1, ...., xN ; θ) depends on the N observations
x1, ..., xN through x̄. Thus the statistic x̄ is a sufficient statistic for the pa-
rameter θ and we call it as the observed point.

Now let us look at the estimation problem in a curved exponential family.
A (n,m)-curved exponential family M = {q(x;u) / u = (ua) ∈ Rm} is a
m-dimensional smooth submanifold of an n-dimensional exponential family
S.

q(x, u) = p(x; θ(u)) (84)

Let x1, ..., xN be N independent observations from q(x;u) ∈ M . Then the
sufficient statistic (or the observed point) x̄ = (x̄1, ..., x̄n) defines a distribu-
tion in S whose η co-ordinate is given by η̂i = x̄i. But this point need not
be in the submanifold M . An estimator û for u ∈ M is a function of the
observed point x̄ = η̂ and can be considered as a mapping from S to M

û = û(x̄) = û(η̂) (85)

Now an ancillary manifold A(u) associated with an estimator û is defined as
the inverse image of the mapping û given by

A(u) = {η = (ηi) ∈ S / û(η) = u} (86)
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That is A(u) is the set of all observed points η in S which are mapped to
u ∈M by the estimator û.

Now let us analyze the characteristics of an estimator û in a curved expo-
nential family M using the geometric properties of the ancillary submanifold
A(u) placed at each u ∈M .
For the consistency of an estimator û, we have the following theorem

Theorem 7.1 Let M = {q(x;u) / u = (ua) ∈ Rm} ⊂ S be a curved expo-
nential family. An estimator û for u ∈ M is consistent if and only if every
point η(u) ∈M ⊂ S is included in the associated ancillary submanifold A(u)
attached to the point u.

Proof Let x1, ..., xN be N independent observations from q(x;u) ∈ M . We
have

E[x] = η(u). (87)

Then by the law of large numbers, x̄ converges in probability (we denote it

by
p−→ ) to η(u) as N −→∞. i.e

x̄
p−→ η(u) (88)

Then we have
û(x̄)

p−→ û(η(u)) (89)

Hence for the estimator û to be consistent, we must have

û
p−→ u (90)

This implies
û(η(u)) = u ⇐⇒ η(u) ∈ A(u). (91)

�

Now we show that the maximum likelihood estimator for a curved expo-
nential family is consistent.

Definition 19 Maximum Likelihood Estimator (MLE)
Let S = {p(x; θ) / θ ∈ E ⊆ Rn} be an n−dimensional statistical manifold
defined on a sample space X ⊆ R. Let {x1, ....., xN} be N independent obser-
vations from a probability density function p(x; θ) ∈ S. Then the likelihood
function L(θ) is given by

L(θ) = p(x1, ..., xN , θ) =
N∏
i=1

p(xi; θ) (92)
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Since log is a strictly increasing function, maximizing the likelihood function
L(θ) is equivalent to maximizing the log-likelihood function log(L(θ)).
We say that θ̂ is the Maximum Likelihood Estimator (MLE) if

θ̂ = arg max
θ∈E

L(θ) = arg max
θ∈E

log(L(θ)) = arg max
θ∈E

N∑
i=1

log(p(xi; θ)) (93)

Consider an exponential family S = {p(x; θ) / θ ∈ E ⊆ Rn}

p(x; θ) = exp(
n∑
i=1

θixi − ψ(θ)) (94)

Then for N independent observations x1, ..., xN from p(x; θ) ∈ S, the statistic
x̄ = (x̄i) is a sufficient statistic for the parameter θ

x̄i =
x1
i + ....+ xNi

N
; i = 1, .., n (95)

The log-likelihood function is given by

log(L(θ)) = `(x1, ..., xN ; θ) = N

[
n∑
i=1

θix̄i − ψ(θ)

]
(96)

Then the MLE θ̂ for θ is determined by

∂

∂θi
log(L(θ)) |θ=θ̂= 0 (97)

which implies
∂iψ(θ̂) = x̄i (98)

Since the dual co-ordinates ηi is given by ηi = ∂iψ(θ), the MLE can be
directly written in terms of dual co-ordinate as

η̂i = x̄i = ∂iψ(θ̂) (99)

Thus the sufficient statistic x̄ is the MLE for the exponential family S.

7.1 MLE for a Curved Exponential Family

Now consider a curved exponential family M = {q(x;u) / u = (ua) ∈ Rm}
of S. Let x1, ..., xN be N independent observations from q(x;u) ∈M . Then
the log-likelihood function is given by

`(x̄;u) = log p(x1, ...., xN ; θ(u)) = N

[
n∑
i=1

θi(u)x̄i − ψ(θ(u))

]
(100)
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The MLE û for M satisfies

∂

∂ua
log p(x1, ...., xN ; θ(u)) |û= 0; a = 1, ..,m (101)

Thus we get
n∑
i=1

∂θi

∂ua
(û) (x̄i − ηi(û)) = 0; a = 1, ...,m. (102)

Thus the ancillary submanifold A(u) associated with MLE is given by

A(u) = {η = (ηi) ∈ S /
n∑
i=1

∂θi

∂ua
(u) (ηi − ηi(u)) = 0; a = 1, ...,m} (103)

Definition 20 Let S be an n-dimensional manifold and let M be an m-
dimensional submanifold of S. Let ∇ be an affine connection on S. Then M
is said to be ∇-autoparallel if

∇XY ∈ T (M) ∀ X, Y ∈ T (M) (104)

where T (M) is the family of smooth vector fields on M .

Theorem 7.2 (Projection theorem) Let (S, g,∇,∇∗) be a dually flat space
and let M be a ∇∗-autoparallel submanifold of S. Let D be the canonical di-
vergence of S. Given p ∈ S, a necessary and sufficient condition for a point
q ∈M to satisfy D(p; q) = minr∈M D(p; r) is that the ∇-geodesic connecting
p and q is orthogonal to M at q.

From equation(24), it follows that η(u) ∈ A(u) for all u ∈M . Thus from
theorem 1.1, the MLE û is a consistent estimator. Thus we have

Theorem 7.3 Let M ⊂ S be a curved exponential family which is ∇e-
autoparallel. Then MLE û for u ∈M is a consistent estimator.
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Chapter 3

Higher order Efficiency

8 Consistency and Efficiency of Estimators

We analyze the higher-order asymptotic behaviors of a smooth estimator
û(x̄) in an (n,m) - curved exponential family M = {q(x, u)}. It is assumed
that the estimator û is a function, independently of N , of the arithmetic

mean x̄ =
(∑

x
i

)/
N of N independent observations. It is easy to extend

the theory to the case when û(x̄) depends explicitly on N . The sufficient
statistic x̄ can be identified with the observed point η̂ = x̄ in manifold S of
the enveloping exponential family in the η - coordinate system. Hence, an
estimator û defines a mapping û : S → M . The inverse image of u by the
estimator û is

A(u) = û−1(u) = {η ∈ S | û(η) = u} , (105)

which forms an (n−m) - dimensional submanifold A(u) attached to the point
u ∈ M . The value of the estimator û is u when the observed point η̂ = x̄
belongs to A(u). The family A = {A(u)} of these A(u)’s is the ancillary
family associated with the estimator û. The asymptotic behaviors of an
estimator û are closely related to the geometric properties of the associated
ancillary family.

Definition 21 A consistent estimator is said to be first-order or Fisher ef-
ficient, when its first-order term gab1 (u) is minimal at all u among all other
consistent estimators. Since gab1 is a matrix, the minimality of a matrix is de-
fined by the order relation hab ≥ gab implying that hab− gab is a non-negative
definite matrix.

Definition 22 A first-order efficient estimator is said to be second-order
efficient, when its second-order term gab2 (u) is minimal at all u among all
other first-order efficient estimator.

Definition 23 A first-order efficient estimator is third-order efficient, when
its third-order term gab3 (u) is minimal at all u among all other second-order
efficient estimators.

We first search for the geometric properties of the first-order efficient
estimator. The first-order term of the distribution of û is given by integrating
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with respect to ṽ the joint distribution of w̃ = (ũ, ṽ),

p(w̃;u) = n[w̃; gαβ(u)] +O(N−1/2).

By virtue of

gαβw̃
αw̃β = gabũ

aũb + 2gakũ
aṽk + gkλṽ

kṽλ

= gkλ(ṽ
k + gkµgµaũ

a)(ṽλ + gλνgνbũ
b) + (gab − gνµgaµgbν)ũaũb,

We have∫
n(w̃ ; gαβ)dṽ =

∫
c exp

{
−1

2
gαβw̃

αw̃β
}
dṽ = n(ũ ; g1 ab),

where c is the normalizing constant, gkλ is the inverse matrix of gkλ and

g1 ab(u) = gab(u)− gaµ(u)gbν(u)gµν(u)

is the inverse of the asymptotic variance gab1 (u) of u. Since the term gaµgbνg
µν

is positive-semi-definite, g1 ab is maximized and hence gab1 is minimized, when
and only when gaµ(u) = 0 holds. This leads to the following theorem, because
of gaµ = 〈∂a, ∂µ〉.

8.1 Theorem

The covariance of a consistent estimator û is given by

E[(ûa − ua)(ûb − ub)] =
1

N
gab1 +O(N−2),

where gab1 is the inverse of

g1 ab = gab − gakgbλgkλ. (106)

A consistent estimator is first-order efficient, when and only when the as-
sociated ancillary family is orthogonal, i.e., A(u) is orthogonal toM, 〈∂a, ∂µ〉 =
gaµ(u) = 0.

This is the geometrical interpretation of the well-known result. The term
g1 ab reduces to the Fisher information gab for an efficient estimator, and the
asymptotic variance gab1 is equal to the inverse gab of gba. The first-order term
of the distribution of an efficient estimator û is

p(ũ ; u) = n[ũ, gab(u)] +O(N−1/2).
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9 Second and third-order efficient estimator

The Edgeworth expansion of the ddistribution of the bias-corrected first-
order efficient estimator û∗ or û∗∗ is calculated here. Due to the relation

ũ∗
a

= ũ∗∗
a − ṽk∂kCa/(2N),

the moments of ũ∗ coincide with those of ũ∗∗ up to the terms of order N−1.
Hence, their distributions are the same up to the term of order N−1. There-
fore, in the following, we simply identify û∗ and denote by û∗ the estimator
û∗∗ which is bias-corrected at (û, 0). The bias of an estimator û is given by

E[ûa − ua] = ba(u) +O(N−3/2),

where

ba(u) = − 1

2N
Ca = − 1

2N
Cαβagαβ (107)

is called the asymptotic bias of an first-order efficient estimator. By decom-
posing gαβ and gkλ, we have

Ca = Ccda
cd
g + Ckλa

kλ
g = Γ

(m)
cd gcd +H

(m)
kλ a

kλ
g ,

because of gak = 0, Ccda = Γ
(m)a
cd and Ckλa = H

(m)a
kλ .

Hence the asymptotic bias ba of an efficient estimator ûa is given by the
sum of the two terms, one is derived from the mixture connection of M and
is common to all the efficient estimators, and the other is derived from the
mixture curvature of the associated A which depends on the estimator The
bias-corrected estimator (û∗∗) is then written as

û∗ = û− b(û).

The distribution of ũ∗ or ũ∗∗ is obtained by integrating ... with respect to ṽ∗

or ṽ∗∗ by the use of the relation gak = 0, giving the same result.

9.1 Theorem

The distribution of the bias corrected first-order efficient estimator ũ∗ is
expanded as

p(ũ∗ ; u) = n[ũ∗ ; gab(u)] {1 + AN(ũ∗ ; u)}+O(N−3/2), (108)
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AN(ũ∗ ; u) =
1

6
√
N
Kabch

abc +
1

4N
C2

abh
ab +

1

24N
Kabcdh

abcd

+
1

72N
KabcKdefh

abcdef ,

where habc etc. are the Hermite polynomials in ũ∗ with respect to the metric
gab. The third and fourth cumulants of ũ∗ are given by

Kabc = −3Γ
(−1/3)
abc ,

Kabcd = Sabcd − 4Dabcd + 12(Γ
(m)
eab + Γ

(e)
abe)Γ

(m)
fcdg

ef ,

and they are common to all the first-order efficient estimators. The esti-
mators differ only in the term C2

ab = CαβaCγδbg
αγgβδ, which represents the

geometric properties of the associated ancillary family A as

C2
ab = (Γm)ab

2 + 2(He
M)2

ab + (Hm
A )2

ab, (109)

where

(Γm)2
ab = Γ

(m)
cda Γ

(m)
efb g

cegdf , (110)

(He
M)2

ab = H
(e)
ack H

(e)
bdλg

cdgkλ, (111)

(Hm
A )2

ab = H
(m)
kλa H

(m)
νµb g

kνgkν . (112)

Proof.

Note that the associated ancillary family A is orthogonal.The identity

Gakb = 〈∇m
∂a, ∂b〉 = ∂a〈∂k, ∂b〉 − 〈∂k,∇e

∂a∂b〉
= ∂agkb −H(e)

abk (113)

is used in calculating C2
ab, where gkb = 0.

We define the contravariant versions of the quantities eqn(110), eqn(111
and eqn(112) by

(Γm)2ab = gacgbd(Γm)2
cd,

(HM
e)2ab = gacgbd(HM

e)2
cd,

(HA
m)2ab = gacgbd(HA

m)2
cd,

They are, respectively, the square of the mixture connection of M , the square
of the exponential curvature of M , and the square of the mixture curvature
of the ancillary submanifold A(u). All of them are non-negative definite. The
mean square error of a first-order efficient estimator is obtained by calculating
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E[ũ∗
a
ũ∗

b
] by the use of eqn(108), where the orthogonality of the Hermite

polynomials guarantees∫
n(ũ∗)ũ∗aũ∗bhc1···cp(ũ∗)dũ∗ = 0

except for p = 2, and∫
n(ũ∗)ũ∗aũ∗bhcddũ∗ = gacgbd + gadgbc

for p = 2.

9.2 Theorem

The mean square error of a bias corrected first-order efficient estimator is
given by

E[ũ∗aũ∗b] = gab +
1

2N

{
(Γm)2ab + 2(He

M)2ab + (Hm
A )2ab

}
+O(N−3/2).(114)

The first-order term gab is the inverse of the Fisher information gba of
M . The second-order term, i.e., the term of order N−1/2, vanishes for all
the first order efficient estimators, so that a first-order efficient estimator
is automatically second-order efficient. The third-order term is decomposed
into the sum of three non-negative terms. The first is a half of the square
of the components of the mixture connection. It depends on the manner of
parametrization of M , but it is common to all the estimators. If we adopt the
mixture normal coordinate system at a specific point u, it vanishes at this
point. The second is the square of the exponential curvature of the model M .
It is a tensor depending on the geometrical property of M , but not depending
on the manner of parametrization nor the manner of estimation. The third
is a half of the square of the mixture curvature of the ancillary submanifold
A(u) at v = 0. Only this term depends on the estimator. Hence, we have
the following theorem.

9.3 Theorem

A bias-corrected first-order efficient estimator is automatically second-order
efficient. It is third-order efficient when, and only when, the associated an-
cillary submanifold A(u) has zero mixture curvature at v = 0.
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